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ABSTRACT

Accurate classification of products under the Harmonized Tariff Schedule (HTS)
is a critical bottleneck in global trade, yet it has received little attention from
the machine learning community. Misclassification can halt shipments entirely,
with major postal operators suspending deliveries to the U.S. due to incomplete
customs documentation.
We introduce the first benchmark for HTS code classification, derived from
the U.S. Customs Rulings Online Search System (CROSS). Evaluating leading
LLMs, we find that our fine-tuned ATLAS model (LLaMA-3.3-70B) achieves
40% fully correct 10-digit classifications and 57.5% correct 6-digit classifi-
cations—improvements of +15 points over GPT-5-Thinking and +27.5 points
over Gemini-2.5-Pro-Thinking.
Beyond accuracy, ATLAS is 5× cheaper than GPT-5-thinking and 8× cheaper
than Gemini-2.5-Pro-Thinking, and can be self-hosted to guarantee data pri-
vacy—an essential requirement in high stake industries like Automotives ,Indus-
trials, Semiconductors etc. for trade and compliance workflows. While ATLAS
sets a strong baseline, the benchmark remains highly challenging, with only 40%
10-digit accuracy.
By releasing both dataset and model, we aim to position HTS classification as a
new community benchmark task. We invite future work in retrieval, reasoning and
alignment to advance progress on this high-impact global trade problem.
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1 INTRODUCTION

Every product imported into the global market must be assigned a Harmonized Tariff Schedule
(HTS) code. These codes, standardized by the World Customs Organization (WCO), are ten digits
long. The first six digits are harmonized across all participating countries, while the last four digits
are country-specific extensions. Correctly identifying the first six digits enables global interoper-
ability, while the full ten-digit code is required for compliance with U.S. customs.

The HTS is deeply hierarchical: 22 sections are divided into 99 chapters, which expand into thou-
sands of subheadings. Chapters 1–97 correspond to stable product categories (such as chemicals,
machinery, and textiles), whereas Chapters 98–99 capture temporary and special provisions that
change frequently. This structure makes tariff classification a natural hierarchical machine learning
task, where six-digit accuracy captures worldwide consistency, and ten-digit accuracy reflects the
U.S.-specific extension.

∗Website: https://tariffpro.flexify.ai/
11. HTS CROSS Rulings Dataset: https://huggingface.co/datasets/flexifyai/cross_rulings_hts_dataset_

for_tariffs
2. Atlas LLM Model: https://huggingface.co/flexifyai/atlas-llama3.3-70b-hts-classification

3. Atlas LLM Model Demo: https://flexifyai-atlas-llama3-3-70b-hts-demo.hf.space/?logs=container&
__theme=system&deep_link=FFJuTJsv_fM
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Despite its centrality, classification remains a major bottleneck. Recent trade policy changes, for
example, the modifications to the de minimis exemption, require that any imported good valued
above $100 must be assigned a valid HTS code. The HTS itself spans more than 17,000 pages
of PDF documents, making manual assignment infeasible at scale. The consequences are global:
in 2025, several major postal operators suspended parcel delivery to the United States, citing the
inability to assign correct HTS codes and complete customs documentation tim (2025), reu (2025),
usa (2025). More than thirty countries were affected, highlighting the fragility of global trade flows
when classification is not available at scale.

Large Language Models (LLMs) offer a scalable alternative. Their capacity for semantic reasoning
and structured classification makes them natural candidates for HTS code classification, where fine-
grained distinctions must be captured. Moreover, since the first six digits are harmonized worldwide,
advances in HTS classification can simultaneously benefit global trade systems, while the U.S.-
specific digits directly address compliance in the American market.

1.1 CONTRIBUTIONS

Our key contributions are:

• We release the first open-source benchmark for HTS classification Yuvraj & Devarakonda
(2025a), constructed from the U.S. Customs Rulings Online Search System (CROSS), in-
cluding training, validation, and test splits.

• We benchmark leading proprietary and open-source models, including GPT-5-
Thinking OpenAI (2025a), Gemini-2.5-Pro-Thinking DeepMind (2025), LLaMA-3.3-70B
Grattafiori et al. (2024), DeepSeek-R1 (05/28) DeepSeek-AI et al. (2025), and GPT-OSS-
120B OpenAI (2025b).

• We fine-tuned LLaMA-3.3-70B with supervised fine-tuning (SFT) to create the specialized
model ATLAS, which we open source Yuvraj & Devarakonda (2025b). ATLAS achieves
40% accuracy at the 10-digit level and 57.5% at the 6-digit level, substantially outper-
forming GPT-5-Thinking (25%) and Gemini-2.5-Pro-Thinking (13.5%).

• Beyond accuracy, ATLAS is significantly more cost-efficient—up to 8× cheaper per in-
ference—and supports privacy-preserving deployment through self-hosting, ensuring that
sensitive trade data never leaves secure environments.

Together, these contributions establish tariff code classification as a new frontier for LLM evaluation,
situated at the heart of compliance for Global Commerce and Trade.

1.2 PAPER ROADMAP

The remainder of this paper is organized as follows. Section 2 describes the construction of our
CROSS-based dataset and its transformation into a machine-learning–ready format. Section 3 de-
tails the fine-tuning procedure for ATLAS. Section 4 presents evaluation results across multiple pro-
prietary and open-source LLMs, analyzing both accuracy and cost efficiency. Finally, we conclude
with a summary of key findings and future research directions in Section 5.

2 DATASETS

A central contribution of this work is the construction of the first large-scale dataset for Harmonized
Tariff Schedule (HTS) classification, derived from the U.S. Customs Rulings Online Search System
(CROSS) Customs & Protection (2025). CROSS contains legally binding decisions issued by U.S.
Customs and Border Protection (CBP), in which importers or brokers sought clarification on the
correct HTS code for specific products. These rulings are authoritative, high-value examples of tariff
classification in practice, but are lengthy, unstructured, and scattered across thousands of HTML
pages—making them inaccessible for machine learning research.
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2.1 DATA COLLECTION

We developed an automated browser agent Project (2025); Google (2025); Pirogov (2025) to sys-
tematically scrape CROSS. Each ruling was matched to a 10-digit HTS code obtained from the
official HTS U.S. website Commission (2025). After filtering and cleaning, the final dataset spans
18,731 rulings covering 2,992 unique HTS codes across a broad range of product categories.

Not every HTS code appears in CROSS, since only disputed or clarified codes are documented.
However, the presence of a code in CROSS is itself informative: frequent rulings signal categories
that are high-demand or ambiguous in practice, while absent codes suggest stable or rarely used
classifications.

2.2 DATA TRANSFORMATION INTO LLM-TRAINABLE FORMAT

Raw CROSS rulings are official letters—legalistic, verbose, and inconsistent in structure. To make
them suitable for supervised learning, we transformed each ruling into a structured prompt–response
format using GPT-4o-mini OpenAI et al. (2024). This lightweight model was cost-effective and
sufficient for information extraction.

Prompt template. Each ruling was converted into the following instruction format:

Given the following HTS ruling information:

HTS Code: {hts_code}
Ruling Number: {ruling_number}
Title: {title}
Date: {date}
URL: {url}
Summary: {summary}
Content: {content}

Please analyze this information and provide:

a) Create a product description that the user was initially getting the HTS US code for
b) Create a reasoning path justifying why the HTS US code is correct
c) Return the HTS US code

Format your response as follows:

User: What is the HTS US Code for [product_description]?
Model:
HTS US Code -> [HTS US Code]
Reasoning -> [detailed_reasoning_path]

This design forces models to both predict the code and provide a reasoning path, aligning with recent
work on chain-of-thought reasoning Wei et al. (2023).

2.3 DATASET SPLITS

From the 18,731 processed rulings, we randomly sampled 200 examples for validation and 200 for
final testing, holding them out strictly from training. The remaining 18,254 rulings form the training
set. This ensures a clean separation between model development and final evaluation. We have
uploaded the dataset to hugging-face Yuvraj & Devarakonda (2025a).

2.4 DISCUSSION

This dataset poses unique challenges: (1) rulings are lengthy and often hinge on subtle distinctions
(e.g., partially fabricated vs. fully fabricated semiconductor wafers); (2) correctness has a hierarchi-
cal structure (6-digit vs. 10-digit); and (3) errors carry real-world consequences for trade and com-
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Table 1: Distribution of the CROSS dataset into training, validation, and test splits.
Split Number of Rulings
Training 18,254
Validation 200
Test 200

pliance. By releasing this benchmark, we aim to establish tariff classification as a novel, high-impact
evaluation task for LLMs, complementing existing benchmarks in reasoning, code generation, and
multilingual understanding.

3 MODEL TRAINING

While several open-source large language models could, in principle, be adapted for tariff clas-
sification, we made a deliberate and principled choice to focus exclusively on LLaMA-3.3-70B
Grattafiori et al. (2024). Two factors motivated this decision. First, practical budget constraints
made it infeasible to fine-tune multiple frontier models at scale. Second, LLaMA-3.3-70B is a dense
architecture, making it both simpler to fine-tune and easier to deploy in inference settings com-
pared to Mixture-of-Experts (MoE) architectures such as DeepSeek-R1 or GPT-OSS-120B. From
a community perspective, providing a dense and reproducible baseline lowers the entry barrier for
downstream research: training and inference pipelines are easier to set up, memory usage is more
predictable, and accuracy is less sensitive to expert routing heuristics.

3.1 SUPERVISED FINE-TUNING OBJECTIVE

We adapted LLaMA-3.3-70B to the CROSS dataset using supervised fine-tuning (SFT) Brown et al.
(2020); Ouyang et al. (2022). Each ruling was transformed into an input–output pair, where the input
is a ruling-derived product description and the output is the correct HTS code along with a reasoning
trace. This makes the task well aligned with the SFT paradigm, which minimizes the token-level
negative log-likelihood of ground-truth outputs.

Formally, for an input sequence x = (x1, . . . , xn) and target sequence y = (y1, . . . , ym), the model
with parameters θ defines conditional probabilities pθ(yt | x, y<t). The training loss is then:

LSFT(θ) = −
m∑
t=1

log pθ(yt | x, y<t),

which corresponds to the standard negative log-likelihood objective.

3.2 TRAINING SETUP AND STABILITY

Fine-tuning was performed for 5 epochs (approximately 1,400 steps) using the AdamW optimizer
with β1 = 0.9, β2 = 0.95, weight decay = 0.1, and a cosine learning-rate schedule initialized at 1×
10−7. To manage the high memory footprint of 70B-parameter models, we employed bf16 precision
and gradient accumulation to simulate a batch size of 64 sequences. Training was distributed across
16 × A100-80GB GPUs using fully sharded data parallelism.

As shown in Figure 1, the training loss decreases sharply in the first 200 steps and then stabilizes
near convergence, with no sign of overfitting on the validation set. We observed stable gradient
norms and no catastrophic spikes in loss, suggesting that dense models like LLaMA-3.3-70B are
well suited to small but domain-specific datasets when carefully regularized. This highlights that
reproducible fine-tuning of frontier models is feasible even under modest compute budgets, provided
that optimization choices are tuned to stability.
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Figure 1: Training loss curve over 1,400 optimization steps. Rapid early improvement is followed
by stable convergence.

3.3 ABLATIONS AND FUTURE WORK

While our study focused exclusively on LLaMA-3.3-70B, several ablation studies could provide
deeper insights and further guide the community:

• Model scale: Evaluating smaller LLaMA variants (e.g., 8B or 3B) would clarify the trade-
off between accuracy, cost, and deployability on edge devices.

• Retrieval augmentation: Integrating retrieval over the 17,000-page HTS documents may
reduce hallucinations and improve long-tail classification accuracy, complementing SFT.

• Contrastive and hybrid objectives: Beyond NLL, contrastive learning between closely
related codes (e.g., semiconductor wafers vs. finished chips) may sharpen decision bound-
aries.

• Direct Preference optimization: Beyond NLL training, methods such as Direct Prefer-
ence Optimization (DPO) Rafailov et al. (2023) could leverage structured preferences over
HTS classifications (e.g., preferring correct 10-digit codes over near-misses, or valid rea-
soning traces over hallucinated ones). This would allow the model to learn not just to
imitate CROSS rulings but to actively steer away from incorrect classifications.

These directions highlight that while ATLAS establishes a strong dense-model baseline, HTS classi-
fication remains an open problem with substantial room for methodological innovation.

4 RESULTS AND EVALUATION

We evaluate all models on a held-out test set of 200 CROSS rulings. The task requires classifying the
correct 10-digit HTS US code for each product description. Since tariff classification is inherently
hierarchical, we report three complementary evaluation metrics:

• Fully correct classification: all 10 digits match exactly. A fully correct classification
means that the end-to-end classification pipeline produces an operationally valid HTS US
code, enabling the product to clear customs.

• Partially correct classification: the first 6 digits (harmonized across all WTO members)
match. This reflects whether the model generalizes to the globally standardized portion of
the code, making it directly relevant for cross-border deployments outside the U.S.

• Average digit-level accuracy: mean number of correctly predicted digits (0–10), capturing
fine-grained improvements even when full correctness is not achieved.

4.1 FULLY CORRECT CLASSIFICATIONS

Table 2 reports the number and percentage of classifications that exactly match the 10-digit HTS US
code. General-purpose LLMs such as GPT-5-Thinking achieve moderate success (25%), whereas
open-source baselines without domain adaptation perform poorly (≤ 3%). Our fine-tuned model,
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Atlas, based on LLaMA-3.3-70B, achieves the best results with 40% fully correct classifica-
tions—meaning nearly half of all test products are classified into a customs-ready code.

Model Fully Correct (N) Accuracy (%)
GPT-5-Thinking 50 25.0%
Gemini-2.5-Pro-Thinking 27 13.5%
DeepSeek-R1 (05/28) 5 2.5%
GPT-OSS-120B 3 1.5%
LLaMA-3.3-70B 3 2.1%
Atlas (Fine-tuned LLaMA-3.3-70B) 80 40.0%

Table 2: Fully correct HTS US code classifications (10-digit match) on the 200-sample test set.

4.2 PARTIALLY CORRECT CLASSIFICATION

Table 3 evaluates classifications at the 6-digit level, which is harmonized globally and thus forms
the basis for international tariff schedules. Here, GPT-5-Thinking reaches 55.5% accuracy, while
Atlas achieves 57.5%. This shows that our domain-specific fine-tuning not only improves U.S.-
specific classification but also transfers to the globally harmonized layer, demonstrating potential
for adoption in worldwide trade contexts.

Model Partially Correct (N) Accuracy (%)
GPT-5-Thinking 111 55.5%
Gemini-2.5-Pro-Thinking 62 31.0%
DeepSeek-R1 (05/28) 53 26.5%
GPT-OSS-120B 16 8.0%
LLaMA-3.3-70B 29 20.7%
Atlas (Fine-tuned LLaMA-3.3-70B) 115 57.5%

Table 3: Partially correct HTS code classifications (6-digit harmonized match).

4.3 AVERAGE DIGIT-LEVEL ACCURACY

Finally, we report the average number of digits correctly predicted per code in Table 4. While
general-purpose models hover around 3–5 digits correct, Atlas achieves 6.3 digits correct on aver-
age. This demonstrates that supervised fine-tuning on CROSS rulings improves fine-grained reason-
ing over tariff codes, even when full correctness is not reached.

Model Avg. Digits Correct (out of 10)
GPT-5-Thinking 5.61
Gemini-2.5-Pro-Thinking 2.92
DeepSeek-R1 (05/28) 3.24
GPT-OSS-120B 2.58
LLaMA-3.3-70B 3.31
Atlas (Fine-tuned LLaMA-3.3-70B) 6.30

Table 4: Average number of correctly predicted digits per HTS code.

4.4 VISUAL COMPARISON

To complement the tables, Figure 2 summarizes model performance across both evaluation levels.
Atlas’s advantage is especially pronounced at the 10-digit U.S.-specific classification task.

4.5 COST EFFICIENCY OF INFERENCE

Beyond accuracy, cost per inference is a critical factor for practical deployment of tariff classification
systems. Closed-source API models such as GPT-5-Thinking and Gemini-2.5-Pro-Thinking incur
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Figure 2: Visual comparison of model performance on HTS classification. Atlas leads at both
evaluation levels, with a marked margin at the 10-digit (U.S.-specific) level.

substantial per-query costs, particularly when scaled to thousands of classifications, whereas fine-
tuned open-source models can be hosted locally or on cost-effective GPU clusters at a fraction of
the price.

Table 5 compares the cost of classifying 1,000 product descriptions into 10-digit HTS codes. We
assume a standard context length (∼1k input tokens, ∼200 output tokens) and use publicly available
API pricing at the time of writing. For open-source models (LLaMA-3.3-70B and Atlas), costs are
estimated from on-demand A100 GPU cloud pricing.

Model Cost for 1,000 HTS Inferences (USD)
GPT-5-Thinking ∼ $3.30
Gemini-2.5-Pro-Thinking ∼ $5.50
DeepSeek-R1 (05/28) ∼ $1.00
GPT-OSS-120B ∼ $0.90 (estimated compute)
LLaMA-3.3-70B ∼ $0.70 (self-hosted)
Atlas (Fine-tuned LLaMA-3.3-70B) ∼ $0.70 (self-hosted)

Table 5: Estimated cost of classifying 1,000 products into 10-digit HTS codes. Closed-source mod-
els use API pricing; open-source models assume on-demand A100 GPU hosting.

4.6 DISCUSSION

Taken together, these results highlight a critical tradeoff: Atlas not only surpasses GPT-5-Thinking
in accuracy (40% vs. 25% fully correct classifications), but also reduces inference cost by nearly
5× compared to GPT-5 and almost 8× compared to Gemini-2.5-Pro-Thinking. Moreover, the
strong performance on partially correct classifications demonstrates that Atlas generalizes beyond
U.S.-specific tariffs to the globally harmonized 6-digit regime, reinforcing its utility for international
trade applications.

5 SUMMARY AND FUTURE DIRECTIONS

This work introduced the first real world benchmark for Trade policy reasoning based on Harmo-
nized Tariff Schedule (HTS) code classification and presented ATLAS, a fine-tuned LLaMA-3.3-70B
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Figure 3: Estimated cost per 1,000 HTS inferences. Atlas (self-hosted) is substantially cheaper than
proprietary APIs.

model adapted to this high-stakes domain. Our study establishes tariff classification as a challenging
new frontier for LLM evaluation, with three central takeaways:

• State-of-the-art performance: ATLAS achieves 40% fully correct classifications at the
10-digit level and 57.5% at the 6-digit level, outperforming GPT-5-Thinking (+15 points)
and Gemini-2.5-Pro-Thinking (+27.5 points).

• Cost and deployment efficiency: ATLAS is nearly 5× cheaper than GPT-5 and 8×
cheaper than Gemini, while enabling self-hosted deployment for sensitive trade and
supply-chain applications.

• Open benchmark challenge: Despite these gains, best 10-digit accuracy remains only
40%, underscoring the need for advances in reasoning, retrieval, and alignment methods.

Looking forward, we see three promising directions: (1) expanding the dataset to include a broader
range of rulings beyond the current subset, (2) distilling ATLAS into smaller variants (e.g., 8B or
3B) for efficient deployment in resource-constrained settings, and (3) exploring enhanced reasoning
techniques and retrieval-augmented methods to improve classification accuracy.

We release ATLAS Yuvraj & Devarakonda (2025b) and the benchmark splits on Hugging Face Yu-
vraj & Devarakonda (2025a) to support reproducibility. By framing HTS classification as a bench-
mark task, we aim to catalyze progress on domain-specialized LLMs—directly tied to the resilience
of global trade and supply chains.
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